Modeling Vegetation as a Dynamic Component in Soil-vegetation-atmosphere Transfer Schemes and Hydrological Models

نویسنده

  • Vivek Arora
چکیده

[1] Vegetation affects the climate by modifying the energy, momentum, and hydrologic balance of the land surface. Soil-vegetation-atmosphere transfer (SVAT) schemes explicitly consider the role of vegetation in affecting water and energy balance by taking into account its physiological properties, in particular, leaf area index (LAI) and stomatal conductance. These two physiological properties are also the basis of evapotranspiration parameterizations in physically based hydrological models. However, most current SVAT schemes and hydrological models do not parameterize vegetation as a dynamic component. The seasonal evolution of LAI is prescribed, and monthly LAI values are kept constant year after year. The effect of CO2 on the structure and physiological properties of vegetation is also neglected, which is likely to be important in transient climate simulations with increasing CO2 concentration and for hydrological models that are used to study climate change impact. The net carbon uptake by vegetation, which is the difference between photosynthesis and respiration, is allocated to leaves, stems, and roots. Carbon allocation to leaves determines their biomass and LAI. The timing of bud burst, leaf senescence, and leaf abscission (i.e., the phenology) determines the length of the growing season. Together, photosynthesis, respiration, allocation, and phenology, which are all strongly dependent on environmental conditions, make vegetation a dynamic component. This paper (1) familiarizes the reader with the basic physical processes associated with the functioning of the terrestrial biosphere using simple nonbiogeochemical terminology, (2) summarizes the range of parameterizations used to model these processes in the current generation of process-based vegetation and plant growth models and discusses their suitability for inclusion in SVAT schemes and hydrological models, and (3) illustrates the manner in which the coupling of vegetation models and SVAT schemes/hydrological models may be accomplished.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of vegetation dynamics in hydrological models for the assessment of the effects of climate change on evapotranspiration and groundwater recharge

Vegetation affects water balance of the land surface by e.g. storage of precipitation water in the canopy and soil water extraction by transpiration. Therefore, it is essential to consider the role of vegetation in affecting water balance by taking into account the temporal dynamics of e.g. leaf area index, rooting depth and stomatal conductance in hydrological models. However until now, most c...

متن کامل

An Assessment of Wind Erosion Schemes in Dust Emission Simulations over the Middle East

Extended abstract 1- INTRODUCTION        Atmospheric aerosols, solid and liquid particles in the atmosphere, play a crucial role in the atmospheric radiation equilibrium. These particles have an influence on the scattering and absorption of short wavelength radiation, and on the other hand, affect radiation absorption and emission in long wavelengths. Dust particles are among the importan...

متن کامل

Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere

Atmospheric general circulation models used for climate simulation and weather forecasting require the fluxes of radiation, heat, water vapor, and momentum across the land-atmosphere interface to be specified. These fluxes are calculated by submodels called land surface parameterizations. Over the last 20 years, these parameterizations have evolved from simple, unrealistic schemes into credible...

متن کامل

Modeling of hydrological processes in arid agricultural regions

Understanding of hydrological processes, including consideration of interactions between vegetation growth and water transfer in the root zone, underpins efficient use of water resources in arid-zone agriculture. Water transfers take place in the soil-plant-atmosphere continuum, and include groundwater dynamics, unsaturated zone flow, evaporation/transpiration from vegetated/ bare soil and surf...

متن کامل

Modeling Land Surface Processes in Short-term Weather and Climate Studies

Land exchanges momentum, energy, water, aerosols, carbon dioxide and other trace gases with its overlying atmosphere. The land surface influences climate on local, regional and global scales across a wide range of timescales. This review concentrates on the rapid (i.e., seconds to seasons) biophysical and hydrological aspects of land surface processes. This paper provides the historical develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002